
A Model-driven Approach to
Predictive Non Functional Analysis of
Component-based Systems

Vincenzo Grassi and Raffaela Mirandola

Università di Roma “Tor Vergata”, Italy

Goal

Architecting systems with components
with predictable quality of services

performance, reliability, availability...
Performance

Software component

What is a software component?
“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties”

C. Szyperski

Starting point
Heterogeneity Heterogeneity

Hardware platforms

Operating systems

Network protocols

Programming languages

Looking for consensus

Based on MODELS

Model Driven Approach
model definition:

sequence of refinement steps

each step specializes and enriches a more “abstract”
model defined at the previous step

Isolation and understanding of basic concepts that must be
modeled and their interdependencies

at each step different refinements can be devised (definitions of
different specialized views of the same system)

Model Driven approach
Abstract resource and service model

Constructive model

Formal

Implementation oriented

Analytic model

“Big O” Analysis Stochastic Analysis

Performance Analysis

Dependability Analysis

Definitions

By resource we mean any run-time entity offering some service
•software components
•physical resources like processors, communication links or

other devices

a service can correspond to some “high level” complex task, or
some “low level” task such as the processing service offered by a
processor.

simple services that do not require any external service to
carry out their task,

composite services, that instead do require them

Root model (GRM-like)

ServiceInstance

ResourceInstance

ResourceUsage

StaticUsage DynamicUsage

Scenario

ActionExecution

QoS characteristics

QoS value

ServiceRequirementInstance

ServiceInstance

+predecessor

+successor
+step (ordered) 1..*

0..1

0..*

0..*

+used
service

+required
service

offered service

+type

+instance1..*

0..*

1

0..*

0..*

0..*
0..*

+offered
QoS

+required QoS

0..*

1

0..*

0..*
0..*

0..*
satisfacted by

0..*
0..*

QoS Attributes

Composite
Service model

Assembly time model

Component-time
model

...definitions

component time service model,
where the required services are specified through a set of
constraints that characterize them

assembly time service model
where the service is actually linked to service instances
that satisfy those constraints

dynamic service usage model
specify some pattern of use of the required services:
specification of action (a specific instance of an invocation
of some required service) executions

MDD
Abstract resource and service model

Constructive model

Formal

Implementation oriented

Analytic model

Big O Analysis Stochastic Analysis

Performance Analysis

Dependability Analysis

Constructive …

…refinement:

service: specification of a “constructive” interface (e.g. the service
signature: name and data type of the formal parameters)

scenario: specification of pattern of “activities”, expressed using
C-like control constructs (conditional statements, loops)

action execution: specification of values of the actual parameters
for external required services invocation

… vs. analytic refinement

service: specification of an “analytic” interface (e.g. name and set
of values of the formal parameters)

scenario: specification of a pattern of “activities” expressed using
some stochastic model (e.g. probabilistic execution graph, stochastic
Petri net)

action execution: specification of random variables modeling the
values of the actual parameters of a service invocation (these
random variables must take values in the set of values for the
corresponding formal parameter)

Constructive vs. analytic refinement:
“abstraction mapping”

service:
“constructive” “analytic” formal parameter
e.g. partitioning the original domain into a (possibly finite) set of
disjoint sub-domains, and then collapsing all the elements in each sub-
domain into a single representative element

scenario:
e.g. conditional statements become probabilistic selections of
alternative paths

action execution:
constructive analytic actual parameters
e.g. the probability distribution of the adopted random variables is
representative of the actual distribution of values in the constructive
parameters.

MDD
Abstract resource and service model

Constructive model

Formal

Implementation oriented

Analytic model

Big O Analysis Stochastic Analysis

Performance Analysis

Dependability Analysis

Stochastic model
refinement

timeliness aspects of a system

“provided QoS” attributes: Texec(i)
time taken to carry out a single request for an offered

service Si

In a stochastic setting, Texec(i) is specified by a random variable

parametric with respect to the service input parameters

whether the service is a simple or composite service;

whether the service is a no contention or contention-
based service.

Time

Stochastic model
refinement(2)

Texec(i) = Tint(i) + Tcont(i) + Text(i)
Tint(i): time spent in internal actions

Tcont(i): time spent waiting before actually accessing the service

Text(i): time to carry out externally required services

with: Text(i) = Texec(j)
)(SiuiredSj Req∈

⊕

Component time

Assembly time

Time

Stochastic model refinement(3)
- contention unaware:

Tcont(i) = 0 for all services, that corresponds to
assuming that all services are no contention services

model for the calculation of Texec(i) uses only information
associated to the dynamic resource usage of each assembled
service Si, neglecting any contention or access control issue
(e.g., “connection” of the execution graphs of the assembled
services) and graph analysis techniques to calculate the
overall completion time.

-contention aware:

Tcont(i) ≥ 0

Example: sort and search service

a resource that offers a search service for an
item in a list; to carry out this service, it
requires a sort service (to possibly sort the list
before performing the search) and a processing
service (for its internal operations). In turn,
the sort service requires a processing service.

Basic GRM-based model

identify the resources involved in the application and the kind
of offered and required services with their basic
characterization

Resource Offered services Service type Required services

Search_res search(list, item) composite process, sort

Sort_res sort(list) composite process

process(op_list) simple noneCPU_res

Constructive refinement

Composite sort and search service characterization
Sort_res.sort(l:list of T) =

{call(process(sort_algorithm(l)))};
Search_res.search (l:list of T, i:T) =

{if (not_ordered(l)) call(sort(l));
call(process(search_algorithm(l)));
}

processing service characterization
CPU_res.process(oplist:list of MachineOperation) =

{do(oplist)}

Analytic refinement:
stochastic approach

Characterization of search and sort services:

the list formal parameter could be defined as l:integer, with domain given by the
set of non negative integers, each representing the size of some list

pattern of activities of the sort and search composite services:

process(k2xlxlog(l)sort(l:integer))

1-p

process(k3xlog(l)

sort(l)

p search(l:integer) :

Analytic refinement:
stochastic approach

actual parameters

random variables parametric with respect to each
service formal parameters (l)

For a quicksort algorithm:
the actual parameter for the process request
can be modeled as an integer valued random variable
in the range [k1×l×log(l), k1×l2],

Characterization of the process service:
an entity executing a single kind of “average” operation
with a formal parameter defined as oplist:integer that specifies the number
of such operations

Contention unaware
analysis

For this kind of analysis we assume the Tcont = 0

Texec(process(oplist)) = Tint(process(oplist)) = oplist/cpu_speed

Texec(sort(l)) = Text(sort(l)) = Texec(process(k2×l×log(l)))

Texec(search(l)) = Text(search(l))
= Texec(process(k3×log(l))) + (1-p)Texec(sort(l))

Finally:

Texec(search(l)) = k3×log(l)/cpu_speed + (1-p)k2×l×log(l)/cpu_speed

Contention aware
analysis

CPU

CPUSource Sink

CPU is a contention resource

CPU

Sort_res
Software QN

Hardware QN

CPU and Sort are
contention resources

Texec(process(oplist))=Tint(process(oplist))+Tcont(process(oplist))

Conclusions and
future work

Definition of a path that leads to the construction of a
stochastic model for the compositional performance analysis
of component-based systems

actual “implementation” of this path

definition of a suitable language to express the needed information

with a precisely defined syntax and semantics that support the
development of automatic tools for QoS predictive analysis of
component-based systems

	A Model-driven Approach to Predictive Non Functional Analysis of Component-based Systems
	Goal
	Software component
	Starting point
	Model Driven Approach
	Model Driven approach
	Definitions
	Root model (GRM-like)
	...definitions
	MDD
	Constructive …
	… vs. analytic refinement
	Constructive vs. analytic refinement: “abstraction mapping”
	MDD
	Stochastic model refinement
	Stochastic model refinement(2)
	Stochastic model refinement(3)
	Example: sort and search service
	Basic GRM-based model
	Constructive refinement
	Analytic refinement: stochastic approach
	Analytic refinement: stochastic approach
	Contention unaware analysis
	Contention aware analysis
	Conclusions and future work

